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Abstract. In this study we develop a theory of tracer diffusion in 2D lattice-gas systems with strongly
repulsive nearest neighbor interactions. The study is performed for a square lattice in the vicinity of half
monolayer coverage. In this case the lattice gas forms a highly-ordered c(2×2) phase. The adatom kinetics
is reduced to the problem of random walks of long-living structural defects. The correlated motion of
tracer-defect pairs is considered. Equations for correlation functions of tracer-vacancy, tracer-excessive
adatoms and tracer-dimer pairs are derived and solved in terms of microscopic jump probabilities of
defects. The solutions are exact in the case of dominant single defect transport mechanisms. In the case of
dimer transport we applied the approximation of short-range correlation length. The values obtained for the
correlation factor are in good agreement with the results of computer simulations in the over-stoichiometric
range, while for sub-stoichiometric coverages the agreement is not very good.

PACS. 82.20.Mj Nonequilibrium kinetics – 68.35.Fx Diffusion; interface formation – 64.60.Cn Order–
disorder transformations; statistical mechanics of model systems

1 Introduction

First- or second-order phase transitions change the sym-
metry of an adatom system. At high temperatures the sys-
tem is disordered and the description of its macroscopic
state requires the knowledge of the adatom concentration
only. In this case, there exists a well defined diffusion coef-
ficient describing the decay of long-scale inhomogeneities
of the adatom density. As the temperature is lowered, the
initially uniform adatom distribution is transformed into a
mixture of phases with different densities (phase transition
of first order) or into an ordered structure (or domains of
ordered structures) with the period larger than the lattice
constant (phase transition of second order). It is evident
that two (or more) different diffusion coefficients appear in
the first case. Each diffusion coefficient describes adatom
flows in a given phase (intraphase diffusion coefficient).
However, it is not clear how to describe the diffusion in
a macroscopically large system, which is a random mix-
ture of different phases. Computer simulations in this case
constitute a severe problem because huge lattice sizes are
required to observe the characteristic many-domain struc-
tures. If only a small number of domains are present, their
evolution is strongly affected by the boundary conditions
and differs from the evolution in an infinite system. To
our knowledge there is no rigorous theory connecting the
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intraphase diffusivities with the computer simulation data
in such a complex system.

The case of the second order phase transition is more
convenient for both theoretical studies and Monte Carlo
(MC) simulations. In this case, as already mentioned,
the system exhibits ordering at low temperatures, i.e.
the whole lattice decomposes into sublattices with dif-
ferent average occupation numbers. Perfect ordering at
T = 0 and characteristic (stoichiometric) total coverages
(which depend on the symmetry of the lattice) corre-
sponds to the situation where some of the sublattices are
completely filled while others remain empty. Intuitively,
it seems to be a reasonable physical picture when the ex-
cessive adatom concentration (adatom inhomogeneity) is
redistributed between different sublattices. The state of
local equilibrium is established between different sublat-
tices if the inhomogeneities are sufficiently smooth and
small. The disturbance of the adatom density causes lo-
cal disturbances of the occupation numbers in each sub-
lattice (coupled disturbances). The complexes formed by
such disturbancies evolve in accordance with the ordinary
diffusion equation and, therefore, an appropriate theory
for the description of diffusion in such a system can be
easily developed, as is shown in the remainder of this pa-
per.

At the same time, computer modelling of highly or-
dered states involves considerable difficulties. First of all,
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ordering freezes adatom motion, and this results in an in-
crease of computer time required to ensure reliable statis-
tics. Besides that, special precautions should be taken
during Monte Carlo simulations in order to avoid uncon-
trolled effects of antiphase domain walls or other macro-
scopic defects (see for example [1]). In view of this point,
rigorous theoretical descriptions provide possibilities to
test computer algorithms and thus could be of enormous
importance.

The theoretical study of the low-temperature phase
is very simple in the case of highly-ordered states which
are established in the vicinity of the stoichiometric cov-
erage. This specific situation was analyzed in our previ-
ous paper [2], where the theory of adatom diffusion on
a square lattice with nearest neighbor (NN) repulsive in-
teractions between adatoms was developed. This system
exhibits c(2× 2) or (

√
2×
√

2)R45◦ ordering at low tem-
peratures and half coverage. The ideal ordering can be de-
scribed by two interpenetrating square sublattices whose
unit cells are rotated by 45◦ and its base vectors are ex-
panded by

√
2 with respect to the primitive unit cell of the

underlying square lattice. It follows from the theory that
in the case of half coverage the total number of defects
(vacancies in the filled sublattice and excessive atoms in
the almost empty sublattice) exponentially decreases if the
interaction parameter increases (or if the temperature de-
creases). A very small number of defects can also be seen
visually in snapshots obtained by means of MC simula-
tion [3]. The snapshots exhibit an almost ideal adatom ar-
rangement at half coverage. Hence, the problem of adatom
diffusion reduces to the problem of random walks in a rar-
efied gas of defects (nearly ideal gas). We managed to ob-
tain analytical formulas for the jump diffusion coefficient
(adatom mobility) and the chemical diffusion coefficient
(the coefficient defined by Fick’s law) in [2,4]. Our equa-
tions represent the exact solution of the problem in the
limiting case when the deviation of the adatom coverage
from stoichiometry is small while the interaction parame-
ter is large. The obtained results considerably differ from
those following from the earlier theories [5,6] based on
uncorrelated adparticle motion.

In addition, expressions for the tracer diffusion coeffi-
cient D∗ were derived in [2]. Qualitatively, the behavior
of D∗ is similar to that of the jump diffusion coeffi-
cient Dj and our studies [2,4] provide evidence supporting
this point. The ratio r ≡ D∗/Dj contains valuable in-
formation on both the adatom transport mechanism and
the correlations between successive tracer jumps (see for
example [1,7]). The correlation effects show the existence
of the memory of the system. Correlation effects belong
to those physical phenomena whose theoretical study re-
quires special care. In what follows, we show that a suffi-
cient accuracy in the theoretical description of r (or D∗)
can be obtained only beyond the approximation of un-
correlated tracer-defect jumps which was implicitly em-
ployed in [2,4]. Hence, the purpose of the present work is
to develop a theory of tracer diffusion based on the model
of adatom migration through defect transport mecha-
nism considering tracer-defect correlations. This paper

complements our previous study with a more accurate so-
lution of the tracer diffusion problem.

2 Migration of defects

In order to obtain the diffusion coefficients, we have to
specify the microscopic mechanism of adatom jumps. As
before, we assume that adatom jumps occur between NN
lattice sites. The jump frequency is given by

νik = ν0 exp[εi],

where ν0 = const. εi is the total interaction energy of
the moving adatom at its initial site i and its nearest
neighbors, i.e.

εi =
∑
NN

ϕnj .

ϕ is the dimensionless adatom-adatom interaction param-
eter (ϕ � 1) and nj = 0, 1 is the occupation number of
the jth NN site.

The strong dependence of the jump frequency on the
number of NN adatoms allows the problem of adatom
diffusion to be reduced to the problem of defect migra-
tion only. In the following we will explain that some types
of adatom jumps do not contribute to the hydrodynamic
mass flow. Figure 1a illustrates this point. The adatom
displacement from site 1 to site 2 (adatom jump from the
filled sublattice to the empty one) results in the forma-
tion of a short-lived state. Three NN adatoms “push out”
the adatom from site 2 to its former position 1 almost
immediately (the occupation time of site 2 is of the or-
der of ν0

−1e−3ϕ). As we see, the adatom arrangement is
not changed after this pair of strongly correlated jumps.
On the other hand, jumps of this type, though being use-
less in the macroscopic mass flow, are of great importance
in establishing the equilibrium defect concentrations. The
first jump from site 1 to site 2 may become the initial
step of a defect-pair generation event (with the probability
7e−3ϕ), which includes three successive jumps. The theory
of generation-recombination processes was developed and
discussed in detail in [2].

Figure 1b illustrates the adatom configuration with an
excessive particle in the empty sublattice (in site 0). This
adatom can jump to site 1 with the probability 1/2 almost
immediately after site 1 becomes available, for instance
after the present occupant of site 1 has moved to site 2.
As a result, the structural defect (“black defect” in the
terminology introduced in [2,4]) migrates from site 0 to
site 2. It was shown that this type of defect which jumps
to the NNN site in the empty sublattice has a character-
istic frequency equal to γb(2a) = ν0eϕ/2. The frequency
of black defect jumps to NN sites (for example, from site
0 to site 3) is twice as high, γb(

√
2a) = 2γb(2a). In con-

trast to the case shown in Figure 1a, black defect jumps
result in the displacements of two different adatoms in
the same direction (or in perpendicular directions), and
thus black defects can be considered as the quasiparticles
contributing to macroscopic mass transport.
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Fig. 1. Square lattice of adsorption sites. For low temperatures
the lattice can be divided in two interpenetrating sublattices
of empty (open circles) and filled (black circles) sites. (a) Two
strongly correlated successive jumps 1 → 2 and 2 → 1 give
no contribution in the mass transport. (b) Filled site 0 of the
empty sublattice forms a black defect. (c) Empty site 0 of the
filled sublattice forms a white defect. Displacements of both
defect species contribute in the mass transport.

Figure 1c illustrates the process of vacancy (white de-
fect) displacement from site 0 to sites 2, 3, 4. This pro-
cess consists of two strongly correlated successive jumps
of the same adatom which occupies one of the sites 2,
3 or 4 in the initial state. The probabilities of vacancy
jumps obtained in [2] and [4] are equal to γ(2a) ≡ 1

2ν0

and γ(
√

2a) = 2γ(2a) for jumps to NNN (site 2, Fig. 1c)
and to NN (sites 3, 4, Fig. 1c) sites, respectively. The va-
cancy mobility is by an exponential factor eϕ lower than
the black defect mobility.

Along with the simplest elementary displacements
caused by single defect jumps, we have also dealt with
the motion of dimer configurations of defects in [2]. Fig-
ure 2a shows the case of two NN black defects (NN dimer).
Initially, the defects in sites 1 and 2 form a NN dimer

Fig. 2. Illustration of dimer motion. (a) Two black defects at
sites 1 and 2 form a nearest-neighbor (NN) black dimer. As
the adatom jumps from site 5 to sites 4 or 3, the dimer can be
transformed either into a similar nearest-neighbor dimer 1-4 or
into a next-nearest-neighbor (NNN) dimer 1-3. (b) Illustration
of tracer-dimer concerted motion. Initially, the dimer and the
tracer are at sites 1-2 and 3, respectively. Two successive dimer
jumps to sites 1-4 and 1-6 displace the tracer to sites 4 and 5.
The dimer jump from 1-2 to 7-2 position leaves the tracer in
the initial site 3. Only a few lattice sites “visited” by dimer or
tracer are shown.

in the empty sublattice. It can be easily seen that the
adatoms in sites 5 and 6 have very high jump probabil-
ities (equal to ν0e2ϕ). An adatom jump from e.g. site 5
to site 3 or 4 is almost immediately followed by a jump
of one of the adatoms in sites 1 or 2 to the then free site
5. As a consequence, the black dimer migrates either to
the sites 1 and 4 (to form a NN dimer) or to the sites 1
and 3 (to form a NNN dimer). The probability of dimer
jumps per unit time interval is equal to Γ = 1

3ν0e2ϕ (see
[2]). The simplest geometric consideration shows that the
black dimer behaves like a long-lived quasiparticle. It un-
dergoes many rotations and transformations from NN to
NNN species before disintegration. It is clear, that the
average number of dimers in the highly-ordered state is
much lower than the number of single defects. On the
other hand, the dimer mobility is much higher than the
mobility of a black defect ( Γ/γb ∝ eϕ � 1). For this
reason, the dimer contribution can dominate the adatom
diffusion (see [2]). It might seem that in this case we must
take into account trimer configurations too. Trimers are
present at a low concentration and possess a very high
jump probability which is of the order of ν0e3ϕ. However,
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the trimer motion is only rotational. Hence, single trimers
do not contribute to the adatom diffusion. In the following
sections we do not further consider trimer oscillations or
the oscillatory adatom jumps shown in Figure 1a.

3 Vacancy mechanism of tracer diffusion

In this section we will consider the situation when vacan-
cies dominate the adatom transport. This is the case in the
highly-ordered state just below the stoichiometric cover-
age. Once the jump probabilities of vacancies are known,
we can easily describe the tracer diffusion. The tracer mi-
gration is governed by the rate equation, which in the
limiting case of vanishing concentrations of vacancies, i.e.
for θ→ 0.5, is given by

∂tn
∗
i = −

∑
j

γw(i− j)[n∗i n
w
j − n∗jnwi ]. (1)

Here the vectors i and j show the positions of adsorp-
tion sites in the filled sublattice. n∗i , n

w
i are the occupa-

tion numbers of site i by tagged particles or vacancies,
respectively, i.e. n∗i , n

w
j = 0, 1. The notation ni refers to

an ordinary particle. The sum of all occupation numbers
is equal to one,

n∗i + ni + nwi = 1,

i.e. double occupancy of sites is forbidden. Moreover,
γw(i− j) is the probability of vacancy jumps between sites
i and j.

γw(i− j) =


ν0, if |i− j| =

√
2a,

1
2ν0, if |i− j| = 2a,
0, if |i− j| > 2a.

(2)

The occupation numbers are not differentiable functions
of time, and it is understood that the notation ∂tn∗i refers
to [n∗i (t+∆t)− n∗i (t)]/∆t with ∆t→ 0.

For low tracer concentrations tracer-tracer correla-
tions are negligible. To obtain the diffusion coefficient in
this case, it is sufficient to study the long-scale space-
time asymptotic behavior of a single particle. This in-
formation is contained in the Fourier-Laplace transform
of equation (1) (see [8]). For a tagged particle initially at
site i (ni(t = 0) = δi,0) we can write

−iωn∗kω = 1−
∑

j

γw(i− j)[n∗i n
w
j − n∗jnwi ]kω (3)

where k → 0 and ω → 0. The Fourier-Laplace transform
of an arbitrary function Fi(t) is determined by the relation

Fkω =
∫ ∞

0

dt exp(iωt)
∑

i

exp(−iki)Fi(t). (4)

It is convenient to perform a statistical averaging of equa-
tion (3) before any further analysis. As far as the initial

position of a tagged particle is fixed, the averaging is per-
formed over the initial distribution of vacancies only. In-
tuitively, it is clear that the asymptotic behavior of the
tracer does not depend on the initial arrangement of the
vacancies. Our procedure of averaging allows small meso-
scopic fluctuations of the tracer mobility to be ignored.

Equation (1) (and Eq. (3)) describes adparticle mo-
tion via vacancy jumps. Its right-hand part depends on
the product of two stochastic variables n∗i and nwj . As we
see, the equation is not closed. Moreover, in general it is
impossible to express the right-hand part of equation (1)
as a function of n∗i only. However, the task is simplified
in the long-scale (hydrodynamic) limit (k→ 0, ω → 0).
In the following we express the part of

〈
n∗i n

w
j

〉
which

slowly varies in space and time as a function of 〈n∗i 〉. For
this purpose, we start from the evolution equation for the
product n∗i n

w
j , which can be derived in a manner similar

to the derivation of equation (1). If we restrict the consid-
erations to terms linear in vacancy concentration, we can
write

∂t[n∗i n
w
i−r] = γw(r)n∗i−rn

w
i −

∑
s

γw(s)n∗i [nwi−r − nwi−r+s],

(5)

where r = i− j 6= 0. The vector s labels the NN and
NNN sites of the filled sublattice. The right-hand part of
equation (1) is expressed in terms of n∗i n

w
i−r with r = s.

As we see from equation (5), the value n∗i n
w
i−r depends on

two space variables r and i. However, it is important to
realize that equation (5) is difficult to handle since is not
defined for r = 0. A simple extension of equation (5) to
include this particular point (r = 0) can be obtained by
adding the term

−δr,0
∑

s

γw(s)n∗i n
w
i+s

to the right-hand part of equation (5). Thus we can write

∂t(n∗i n
w
i−r) = γw(r)n∗i−rn

w
i − δr,0

∑
s

γw(s)n∗i n
w
i+s

−
∑

s

γw(s)n∗i [nwi−r − nwi−r+s],
(6)

where the vector r can now point to any value in the
filled sublattice including the point r = 0. Equation (6)
is transformed into identity for r = 0, which follows from
n∗i n

w
i−r = 0 for r = 0.
In a manner similar to paper [8], we introduce a tracer-

vacancy correlation function

gωk (λ) =
∫ ∞

0

dt exp(iωt)
∑
i,r

exp[i(λr − ki)]
〈
n∗i [nwi−r − nw]

〉
(7)

with nw = 〈nwi 〉. The equation of motion for gωk follows im-
mediately from equation (6). In the limiting case of small
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k and ω (ks� 1, ω � γw) this equation is given by

(−iω + ωλ)[gωk (λ) + nw〈n∗kω〉] =
∑

s

γw(s)(e−iλs − 1)gωk (s)

−
∑

s

γw(s)eiλsiksnw
〈
n∗k,ω

〉
, (8)

where

ωλ =
∑

s

γw(s)(1− eiλs). (9)

The inverse Fourier transformation of equation (8) from
λ to r variables yields a relation between the values of
function gωk (r) with different r, i.e.,

gωk (r) = −nw
〈
n∗k,ω

〉
δr,0

+
∑

s

γw(s)[gωk (s) + iksnw〈n∗kω〉][P (r + s)− P (r)], (10)

where

P (r) =
2
N

∑
λ

exp(−iλr)
−iω + ωλ

· (11)

N/2 is the total number of sites in the filled sublattice; the
sum

∑
λ runs over N/2 values in the inverse sublattice.

Putting r equal to eight different values of s, we obtain a
system of eight linear equations for the unknown quanti-
ties gωk (s) from equation (10). Considering the symmetry
properties of the system allows further simplifications of
our treatment. First of all, we can use the obvious rela-
tion P (r) =P (−r). Secondly, our purpose is to study the
tracer diffusion on a square lattice. The diffusion tensor
in the system with square symmetry reduces to a scalar.
Therefore, it is sufficient to obtain the diffusion coefficient
for any direction. Thus, without loss of generality we can
consider only the case of k parallel to the line between the
NN sites of the host lattice (see Fig. 3). As a result, the
system of eight equations is reduced to only two intercon-
nected equations. The solution is given by

gωk (s) = iksnw
〈
n∗k,ω

〉
[−1 +∆(s)], (12)

where

∆(
√

2a) =
1 + (ν0/2)(P05 + 2P41)

[1 + ν0P03][1 + (ν0/2)P05]− [ν0P14]2
,

∆(2a) =
1 + ν0(P03 + P41)

[1 + ν0P03][1 + (ν0/2)P05]− [ν0P14]2
· (13)

The quantities Pij are determined by the relation Pij ≡
P (i) − P (j) with the positions i, j of the lattice sites
in the filled sublattice as shown in Figure 3. The val-
ues Pij can be calculated numerically by employing the
definitions (11, 9).

With the quantities gωk (s) given by equation (12) we
can easily determine the tracer diffusion coefficient asso-
ciated with vacancy motion. Equation (3) now takes the

Fig. 3. Orientation of the vector k and the positions i, j in the
notation Pi,j (see Sects. 3 and 4).

form

− iω
〈
n∗k,ω

〉
= 1− 1

2

∑
s

γw(s)(sk)2nw〈n∗kω〉

+
∑

s

γw(s)iskgωk (s),
(14)

which can be transformed using equation (12) into

−iω
〈
n∗k,ω

〉
= 1−D∗wk2〈n∗kω〉. (15)

Here the tracer diffusion coefficient D∗w represents the
contribution of both sums in the right hand part of
equation (14), D∗w = D∗0w + ∆D∗w. The value D∗0w is
given by

D∗0w = 4D0nw,

where D0 = ν0a
2. It describes the tracer diffusion coeffi-

cient if one neglects tracer-vacancy correlations (when we
put the function gωk equal to zero). The quantity D∗0w ex-
actly reproduces the tracer diffusion coefficient obtained
in [2], which is equal to the jump diffusion coefficient Djω .

The quantity ∆D∗w is determined by the second sum in
the right-hand part of equation (14). Numerical calcula-
tions employing equations (11–14) give the value ∆D∗w ≈
−0.37D∗0w. Hence, the ratio of tracer and jump diffusion
coefficient is given by

r = D∗w/Djw = 1 +∆D∗w/D
∗
0w = 0.63,

i.e. tracer-vacancy correlations reduce the tracer diffusion
coefficient relative to the jump diffusion coefficient. The
situation is similar to the case of tracer diffusion in the
Langmuir (non-interacting) lattice gas in the vicinity of
full monolayer coverage, θ→ 1, (see for example [8–10]). A
considerable correlation between successive tracer jumps
is present in that case since, after a jump of a tracer, the
vacancy that promoted this jump is with certainty behind
the tracer. Therefore, a backward jump of the tracer is
more likely than another forward or sideward jump. As
a consequence, the effective jump frequency of a tracer
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is lowered. For a more detailed discussion of this “back-
ward jump model” see the paper of Haus and Kehr [11].

The deviation of r from 1 obviously describes the
tracer-defect correlation. At the same time, the correla-
tion in tracer jumps can be described in terms of another
physical quantity, namely, the correlation factor f [12,13]
which is defined by the relation

D∗ = fV a2Γ, (16)

where V is the vacancy availability factor and Γ is the
adatom jump frequency. These quantities are given by

Γ = ν0〈eεi(ni/θ)(1− nj)〉/V

and

V = 〈(ni/θ)(1− nj)〉.

Here the sites i and j constitute nearest neighbor sites.
We can easily see that quantities f and r are identical

in the absence of interaction (when ϕ = 0), but differ
otherwise. For the highly-ordered state considered here,
we have V ≈ 1 and Γ ≈ 2ν0. Thus, the correlation factor
is approximately given by

f = D∗w/2D0 � 1.

In other words, the correlation factor f is reduced to the
normalized tracer diffusion coefficient and does not explic-
itly contain tracer-defect correlation effects.

There exists another definition of the correlation factor
of a random walk, first given by Compaan and Haven [14]

f = (1 + 〈cosΘ〉)/(1− 〈cosΘ〉), (17)

where Θ is the angle between two successive jump vec-
tors of the walk, and 〈...〉 represents the average over
all pairs of successive jumps. It follows from the discus-
sion in Section 2 that oscillatory adatom jumps, shown in
Figure 1a, are the most frequent event. For each pair of
these jumps cosΘ = −1 and f → 0 in the case of highly
ordered state. This agrees well with the result obtained
from the definition (16). In that case f ∝ nw and nw → 0
when the ordering increases. Small values of f can also
be explained by the fact that oscillatory jumps, constitut-
ing the major contribution to the jump frequency Γ , are
useless in tracer diffusion.

A dramatic lowering of a the correlation factor in
the vicinity of a highly ordered state was observed dur-
ing Monte Carlo simulations of various lattice gas models
in [1,7,15,16]. The above consideration explains this effect
(see also the physical explanation given in [3]).

4 Black defect mechanism of tracer diffusion

Let us consider tracer diffusion caused by the defect mo-
tion in the empty sublattice (black defects). The black de-
fect transport mechanism dominates for coverages slightly
above the stoichiometric one, i.e. when excessive adatoms

occupy the empty sublattice of the c(2× 2) ordered state.
In this case the motion of a tagged particle is more compli-
cated than in the previous case. Figure 1b can be used to
illustrate this point. Initially, the tagged particle is as-
sumed to be in site 1. The defect jump to one of the
sites 2, 3 or 4 displaces the tracer to the corresponding
site with the probability equal to ν0eϕ/2 ≡ γ. As a result,
the tracer changes from the filled to the empty sublat-
tice, where it forms a black defect. The next tracer jump
then may occur (in the absence of another defect) with
the frequency proportional to γ. Thus, we have two rate
equations for this type of motion, which are given by

∂tn
∗
i = −(3γ/2)

∑
a

[n∗i n
b
i+a − nb∗i+a]

∂tn
b∗
j = −6γnb∗j + (γ/2)

∑
a 6=−a1

n∗j+an
b
j+a+a1

. (18)

Here nbj and nb∗j denote the defect stochastic variables;
the symbol (∗) represents the defect formed by the tagged
particle. The vectors a and am run over NN sites of the
host lattice (|a|, |am| = a). The system (18) is not closed.
It should be completed by the evolution equation for the
pair stochastic function n∗i n

b
j . This equation is given by

∂t(n∗i n
b
j) =

γ

2

∑
a 6=−a1

δi−j,a1
(nb∗i+a − n∗i nbi+a)

− γ

2

∑
a 6=−a1

n∗i (nbj − nb∗j+a+a1
),

(19)

where the vectors i and j belong to different sublattices.
As before, it is convenient to introduce a function de-

scribing correlations in the tracer-black defect motion.
This function has the form

Gi(r, t) =
〈
n∗i (nbi−r − nb)

〉
. (20)

Employing equations (18, 19) we easily obtain an equation
for the Fourier-Laplace transform of G. It is given by

(−iω + ωλ)Gωk(λ) =
γ

2

∑
a

[(eiλa − 1
4

∑
a1

eiλa1)Gωk(a)

+ ikaeiλanb〈n∗kω〉], (21)

where

ωλ =
γ

2

∑
a,a1

[1− eiλ(a+a1)].

Equation (21) yields a system of four interconnected equa-
tions for the functions Gωk(a),

Gωk(a) =
γ

2

∑
a1

[
P (a− a1)− 1

4

∑
a2

P (a− a2)
][
Gωk(a1)

+ ika1n
b〈n∗kω〉

]
. (22)

The quantity P (r) is defined by equation (11). The solu-
tion of equation (22) is very simple, i.e.,

Gωk(a) =ikanbn∗k,ω∆, (23)
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where ∆ = γP02/(2 − γP02). The index 02 denotes the
sites 0 and 2 as shown in Figure 3.

With the functions Gωk(a) it is possible to find the
tracer diffusion coefficient. Considering the system of
equations (18) and the definition (20), the values 〈n∗kω〉
and Gωk(a) are related by

−iω
〈
n∗kω + n∗bk,ω

〉
= 1− 3γa2k2nb〈n∗kω〉 −

γ

2

∑
a

kaGωk(a)

(24)

The second term in the brackets of the left-hand part can
be neglected. Its value is of the order of nb, i.e. much
smaller compared to the remaining terms of equation (24).
Using equation (23), equation (24) is transformed to

−iω〈n∗kω〉 = 1− 3D0eϕnb(1−∆/3)k2
〈
n∗k,ω

〉
. (25)

Thus the tracer diffusion coefficient D∗b is given by

D∗b = 3D0eϕnb(1−∆/3), (26)

where the second term in the brackets (∆/3) accounts
for the contribution of Gωk(r) and thus represents the
effect of tracer-defect correlations. The numerical cal-
culations yield ∆/3 ≈ 0.033. Hence, we have D∗b =
2.9D0eϕnb, which is very similar to our earlier result
D∗0b = 3D0eϕnb [2,4]. With Djb = 4D0n

b as jump dif-
fusion coefficient the ratio r = D∗b/Djb is ≈ 3/4 as before.

5 Black dimer mechanism of tracer diffusion

The theoretical value of r and corresponding Monte Carlo
data do not well agree for coverages with prevailing black
dimer transport [2]. Therefore, it is important to account
for correlation effects in the motion of dimers. It is quite
obvious that the concerted motion of defects and tagged
particles is the most complex problem considered in this
paper. Figure 2b illustrates the correlated jumps of dimers
and tracer particles. Initially, the tagged particle is in
site 3 of the filled sublattice, and the dimer is formed
by the defects in sites 1 and 2 of the empty sublattice.
Two possible successive jumps of the dimer to 1-4 and 1-6
positions are shown in Figure 2b. These jumps are accom-
panied by tracer displacements from site 3 to the sites 4
and 5. The tracer becomes a constituent of the 1-4 dimer
after its jump from site 3 to site 4. The picture is very
similar to the case of black defect motion where the tracer
in the empty sublattice becomes the black defect.

The general scheme of the theoretical description of
this particular case is similar to the previous cases. It is
convenient to proceed from the evolution of the total oc-
cupancy of site i and its NN minima, namely,

n∗i +
1
4

∑
a

n∗i+a.

Here we assume that site i belongs to a filled sublattice.
Before writing the rate equation, we introduce the nota-
tion for the dimer variables: nj

i denotes the dimer formed

by the pair of defects in the sites i and j of the empty
sublattice (|i− j| =

√
2a or 2a); nj

i∗ means that the defect
in the site i is formed by a tagged particle.

Thus the rate equation is given by

∂t(n∗i +
1
4

∑
a

n∗i+a) =
3
2
Γ
∑

(ni+a1
i+a∗ − n∗i n

i+a1
i+a )

+
Γ

4

∑
(n∗i+a+a1

ni+a+a1+a3
i+a+a1+a2

−ni+a+a1+a2
i+a∗ ). (27)

The first sum in the right-hand part runs over the vectors
a,a1 excluding the terms with a = a1. The second sum
runs over the vectors a,a1, a2, a3 excluding the terms
with a,a2, a3= −a1 and a2 = a3.

Similar to the situations studied in Sections 3 and 4,
the right-hand part of the rate equation depends on the
products of stochastic variables. It is useful to simplify the
treatment, for instance by summing up over the vectors
ai in (27). For this purpose, we will perform the Fourier-
Laplace transformation of equation (27) assuming that the
wave vector is directed along one of the vectors a: k‖a‖x
(see Fig. 3). As in the previous sections, we will treat the
case k→ 0. Then equation (27) is transformed into

− iω〈n∗kω〉 = 1−12Γ (ka)2nd〈n∗kω〉+Γka{−ka[G(a‖,−a‖)

+ 3G(a⊥,−a⊥) + 4G(a‖,a⊥) + 4G(−a‖,a⊥)]

+ 4i[G(a‖,a⊥)−G(−a‖,a⊥)] + 2i[−d(2a‖)

+ d(−2a‖)− 2d(a‖ + a⊥) + 2d(−a‖ + a⊥)]},
(28)

where the vectors a‖ and a⊥ are directed along the x and
y axes, respectively (|a‖,⊥| = a). The correlation functions
G(a,a1) and d(a + a1) are defined by the relations

G(a,a1) =
∫ ∞

0

dt
∑

i

eiωt−iki
〈
n∗i (ni+a1

i+a − nd)
〉

d(a + a1) =
∫ ∞

0

dt
∑

i

eiωt−iki
〈
ni+a+a1

i∗ − n∗i nd
〉
,(29)

where

nd ≡
〈
ni+a1

i+a

〉
= (nb)2.

For the sake of brevity, we have not indicated the depen-
dencies of G and d on k and ω in equations (28, 29).

The evolution of 〈n∗kω〉 is determined by the correlation
functions G(a,a1) and d(a + a1). However, only terms
linear and quadratic in ka enter the right-hand part of
equation (28). Therefore, it is sufficient to obtain the terms
G(a,a1) and d(a+a1) of zeroth and first order in ka. These
observations considerably simplify our task.
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The rate equations for the stochastic pair variables are
given by

∂t(n∗i n
l+a+a1
l ) = Γ (1− 1

2
δa,a1

){−8n∗i n
l+a+a1
l

+
∑

a2 6=−a,a1

[n∗i (nl+a+a2
l + nl+a1−a2

l

+nl+a+a1
l+a1−a2

+ nl+a+a1
l+a+a2

)

+δl,i−a(ni+a1
i+a2∗ + ni−a

i+a2∗ − n
∗
i n

i+a2
i−a

−n∗i ni+a1
i+a2

) + a←→ a1]}

∂tn
i−a
i−a1∗ = Γ (1− 1

2
δa,−a1

){−8ni−a
i−a1∗

+
∑

a2 6=a,a1

[ni−a−a1+a2
i−a1∗ + ni−a2

i−a1∗ + n∗i n
i−a
i−a2

+n∗i−a−a1
ni−a

i−a−a1+a2
]. (30)

The notation a←→ a1 in equation (30) implies the term
equal to the previous one with the vectors a and a1 being
interchanged.

Our theory deals with the complicated three-particle
kinetics on 2D discrete lattice with the peculiar condi-
tion that a pair of defects are separated by the distances√

2a, 2a to form a black defect dimer, and each pair of
different particles (defects and tracers) are allowed at ar-
bitrary distances (including double occupancy of the same
site). This situation can be treated in a manner simi-
lar to the previous cases. After statistical averaging and
Fourier-Laplace transforming, equation (30) reduces to a
system of linear equations with respect to the pair cor-
relation functions. These linear equations are similar to
equations (8, 21) discussed earlier. A straightforward so-
lution of the problem employing double Fourier transfor-
mations from the real space domain to k, λ variables is too
tedious. Therefore, we will restrict the considerations to
an approximate solution taking into account tracer-dimer
correlations only for a few specific situations, for instance
(i) when the tracer and both defects are NN, or (ii) when
the tracer is a constituent of the dimer. The approxima-
tion assumes that〈

n∗i n
l+s
l

〉
≈ 〈n∗i 〉

〈
nl+s

l

〉
≡ 〈n∗i 〉nd, (31)

if at least one of the two distances |i− l|, |i− l− s| is
longer than 2a (this is the case, for example, when the
black dimer is in sites 2 and 7 and the tracer is in site 3,
see Fig. 2b). Thus, equation (31) corresponds to the short-
range correlation approximation.

The approximation given by equation (31) is justified
by the underlying physical picture. The probabilities of
tracer displacements due to the dimer jumps from the po-
sitions 1-2, 1-4 and 1-6 shown in Figure 2b are equal to
either one or one half. We can see strong tracer-dimer
correlations here. In contrast, if the tracer is not a dimer
constituent or if at least one of the defects is not a NN of
the tracer, then the probability of a concerted tracer-dimer
jump is equal to zero. Obviously, the dimer can “find” the
tracer in some jumps, thus providing more distant corre-
lation effects (or memory effects). Nevertheless, it seems

that the contribution of the long-range correlations is less
significant compared to the short-range correlations.

Approximation (31) allows us to obtain a system of
interconnected equations for the values G and d. These
equations are derived with regard for equation (30). We
can write

8
(

1− 1
2
δa,−a1

)
G(a,a1)

−
∑

a2 6=a,a1

[d(a− a2) + d(a1−a2)] = 2
∑

a2 6=a,a1

ika2nd〈n∗kω〉

8d (a + a1)−
∑

a2 6=−a,a1

[d(a + a2) + d(a1−a2)

+G(a,−a2) +G(a1,a2)] = 2ik(a + a1)nd〈n∗kω〉. (32)

For our specific choice of the direction of k, equations (32)
reduce to only nine interconnected equations. Substituting
the solutions of this system in equation (28), we get

−iω〈n∗kω〉 = 1−D∗0d(1−∆corr)k2〈n∗kω2〉, (33)

where D∗0d = 4D0(eϕnb)2 is the value of the tracer diffu-
sion coefficient obtained in [2] ignoring tracer-dimer cor-
relations (when G(a,a1) = d(a − a1) = 0). The quan-
tity ∆corr linearly depends on the functions G and d,
and accounts for the tracer-dimer correlations. Numeri-
cal calculations yield ∆corr ≈ 0.47. Hence, it follows from
equation (33) that the tracer diffusion coefficient D∗d is
equal to D∗d ≈ 2.12D0(eϕnb)2. In reference [2] the jump
diffusion coefficient, associated with dimer motion, is ob-
tained as Djd = 16

3 D0(eϕnb)2. As we see, the coefficient
r is equal to r = (D∗d/Djd) ≈ 0.4 in this case. This value
is in much better agreement with the results of computer
simulations than r = 0.75 obtained in [2].

6 Comparison of theory and Monte Carlo
simulation data

The complete expression for the tracer diffusion coeffi-
cient, D∗ = D∗w +D∗b +D∗d, is given by

D∗ = 4D0[0.63nw + 0.72nbeϕ + 0.53(nbeϕ)2]. (34)

The average occupation numbers of vacancies and black
defects, nb,w, were obtained in [2,4] as by

nb,w = ±(θ − 1/2) +
√

(θ − 1/2)2 + e−4ϕ. (35)

The dependence D∗(θ) is qualitatively very similar to that
of the jump diffusion coefficient Dj(θ),

Dj = 4D0[nw + nbeϕ + (4/3)(nbeϕ)2], (36)

which was obtained already in reference [2]. Both func-
tions are shown in Figure 4 for two characteristic tem-
peratures, T = 0.5Tc and T = 0.7Tc, i.e. well below Tc.
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Fig. 4. Coverage dependence of tracer and jump diffusion co-
efficients (D∗ and Dj, respectively). Symbols show the results
of MC simulation. Dashed lines and symbols (◦) correspond to
temperature 0.7Tc (ϕ = 2.52); solid lines and symbols (+) are
for T = 0, 5Tc (ϕ = 3.53).

The agreement between theory (lines) and Monte
Carlo [17] data (symbols) is good, though not perfect. De-
viations are most prominent at the pathological coverage
θ = 0.5, but also for θ � 0.5, T = 0.5Tc and, especially in
the case of D∗, for θ � 0.5.

Despite the formal similarity between the correspond-
ing functional dependencies of D∗ and Dj, their numeri-
cal values are quantitatively different. In order to empha-
size the differences, we present their ratio r in Figure 5.
Exact results for r are available from the literature for
the limiting cases θ → 0, 1 for the non-interacting lat-
tice gas. For θ → 1 Montet, Nakazato and Kitahara give
r ≈ 0.47 [9,10]. It is probably interesting to recall that
the vacancy mechanism of tracer diffusion (considered in
Sect. 3), which dominates tracer diffusion for coverages
θ < 0.5, is very similar to the case θ → 1 of the non-
interacting lattice gas. However, the most obvious differ-
ence is that in the former case the white defect can jump
to NN and NNN sites as well. The additional possibility
of vacancy jumps to NNN sites lowers the probability of
backward jumps of the tracer after each displacement and
this, in turn, lowers the correlation effect relative to the
situation for the non-interacting lattice gas and θ → 1.
Hence, it is reasonable to assume that the possibility of
white defect NNN jumps largely accounts for the calcu-
lated value of r = 0.63 compared to the θ → 1 limit of
r ≈ 0.47 in the non-interacting lattice gas.

The MC simulation yields r ≈ 1 in the range of va-
cancy transport mechanism (for θ < 0.5). In general, this
value is typical for systems without any correlation. It is
quite obvious that the Monte Carlo data agree much bet-

Fig. 5. The ratio of tracer and jump diffusion coefficients.
The results of previous theory [2] are shown by two upper
curves. The two lower curves are plotted with the use of the
expression (34). Notations as in [2].

ter with the tracer diffusion coefficient D∗0

D∗0 = 4D0

[
nw + 0.75nbeϕ + (nbeϕ)2

]
(37)

obtained under the assumption of negligible tracer-defect
correlation in [2]. To elucidate the evident disagreement
between theory and MC simulation, a series of very time-
expensive MC studies is required because of the low mo-
bility of vacancies in this regime.

The pathological point θ = 0.5 has to be discussed sep-
arately. It follows from equation (35) that the number of
defects is lowered exponentially upon increasing the inter-
action parameter (as e−2ϕ). The available defects originate
only from thermal pair generation processes. The corre-
sponding generation term obtained in [2] depends on e−3ϕ.
For the computer algorithm employed here (see details
in [3]) the required computer time, which ensures many
generation events on the whole surface, grows according
to e6ϕ. To overcome this problem of freezing of adatom
motion at θ = 0.5 rather sophisticated algorithms have
been developed recently, for instance the one described by
Bulnes et al. [19]. The values of D∗ obtained in [19] agree
well with our theoretical data for θ = 0.5.

Next we will discuss the behavior of the tracer diffu-
sion coefficient in the case of the black defect transport
mechanism (for θ > 0.5). One has to take into account
the observation that the tagged particle modifies the sub-
lattices after each jump. The tagged particle in the empty
sublattice itself forms a defect which can jump in any di-
rection with equal probabilities irrespective of the previous
jump. This weakens the memory of the system concerning
the preceding first tracer jump and lowers the value of the
tracer-black defect correlation function. The contribution
of this correlation function to the overall tracer diffusion
coefficient amounts to about 3 percent only. However, this
does not mean that the correlation effect in the adatom
transport is weak. Each jump of the black defect is the re-
sult of two strongly correlated jumps of different adatoms.
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The value r = 3
4 obtained and explained in our previous

paper just reflects this type of correlation (the correlation
of two successive adatom jumps). The physical explana-
tion for r = 3

4 given in reference [2] does not employ the
concept of the tracer-black defect correlation. In general,
the non-zero value of the tracer-defect correlation func-
tion implies the presence of high-level correlations in the
adatom motion: the correlation of at least four adatom
jumps which occur in the course of two defect jumps. Our
study shows that such correlations do not contribute con-
siderably in the case of the black defect mechanism.

The various reasons discussed in the preceding para-
graph explain the lowering of r if black dimer transport
replaces single defect transport. In this case, the tracer
changes the sublattices after each jump, too. This factor
by itself results in r equal to 3

4 (as in the simplified version
of the theory in [2]). Further lowering of r from 0.75 to
0.4 is due to the effect of tracer-dimer correlations. This
pronounced correlation effect can be easily explained from
geometric consideration (see Fig. 2b). After jumping from
site 3 to site 4, the tracer becomes a constituent of the
1-4 dimer. The next dimer jump can displace the tracer
to site 5 (in the direction perpendicular to the initial dis-
placement) or to site 3 (in the backward direction), but not
along the 3-4 direction. Thus, we see an evident tendency
of returning to the initial state. This is in contrast to the
case of the black defect mechanism when the black defect
tracer can jump to each NN site with the same probabil-
ity. The prevailing tendency of jumping to the initial state
means that the tracer effective jump frequency is lowered
and, of course, this results in the lowering of the diffu-
sion coefficient. A similar analysis can be applied to the
tracer which is a constituent of a NNN dimer. The tracer-
dimer correlations are of great importance here, too. The
MC simulation provides evidence supporting this quali-
tative consideration and the results of the theory in the
coverage range of dominating dimer transport.

7 Summary

We have presented an analytical study of adatom
migration of repulsively interacting adatoms on the two-
dimensional square lattice. The theory developed here
and in paper [2], is applicable for the highly-ordered state
only. The analytical expression for the tracer diffusion co-
efficient contains information about correlation (memory)
effects in the adparticle motion. We have compared the
results of the theory with corresponding Monte Carlo re-
sults. Both approaches are complementary to each other,
since the special case θ = 0.5 which is difficult to treat
via MC is the most appropriate for the theoretical treat-
ment. Each of them has specific advantages useful for the

comprehensive study of diffusion in highly-ordered lattice-
gas systems.
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